

The Jasmine OpenSSD Platform
Version 1.4

Technical Reference Manual

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 2

Copyright 2011 VLDB Lab. All rights reserved.

Revision history

Date Author Description Rev.

2011-04-27 Sangphil Lim

(Sungkyunkwan university)

Initial release 1.0

2011-04-28 Sangphil Lim

(Sungkyunkwan university)

fix typo & reflect review comments 1.1

2011-05-20 Sangphil Lim

(Sungkyunkwan university)

Section 2.1, 2.3, 2.5 update 1.2

2011-06-01 Sangphil Lim

(Sungkyunkwan university)

fix errata (Section 4.4 & 4.5) 1.3

2012-01-11
Sangphil Lim

(Sungkyunkwan university)

Fix errata &

Update some additional information

(Section 2.5, 3.3.2)

 1.4

2016-08-22

Preethika Kasu, Donghyun Kang,

Heerak Lim

(Ajou university)

Translated to English

 1.4

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 3

Copyright 2011 VLDB Lab. All rights reserved.

Contents

The Jasmine OpenSSD Platform: Technical

Reference Manual

PREFACE ... 4

ABOUT THIS DOCUMENT ... 4

CONTENTS ... 4

FURTHER READING ... 4

FEEDBACK .. 4

CHAPTER 1. JASMINE OPENSSD PLATFORM SPECIFICATION ... 5

1.1. OVERVIEW ... 5

1.2. JASMINE BOARD .. 5

CHAPTER 2. INDILINX BAREFOOTTM SSD CONTROLLER SPECIFICATION 8

2.1. HARDWARE ARCHITECTURE ... 8

2.2. MEMORY MAP ... 11

2.3. NAND FLASH CONTROLLER ... 15

2.4. SATA CONTROLLER ... 18

2.5. DRAM HOST BUFFER & BUFFER MANAGER ... 19

2.6. MEMORY UTILITY .. 22

2.7. INTERRUPT CONTROLLER ... 23

CHAPTER 3. JASMINE OPENSSD PLATFORM FIRMWARE ARCHITECTURE 25

3.1. FIRMWARE OVERVIEW ... 25

3.2. HOST INTERFACE LAYER .. 25

3.3. FLASH TRANSLATION LAYER ... 26

3.4. FLASH INTERFACE LAYER ... 30

CHAPTER 4. JASMINE OPENSSD PLATFORM SOFTWARE SPECIFICATION 32

4.1. SOURCE FILE DESCRIPTION .. 32

4.2. INSTALLER FUNCTION ... 35

4.3. FTL PROTOCOL API ... 35

4.4. LLD API .. 37

4.5. MEMORY UTILITY API .. 40

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 4

Copyright 2011 VLDB Lab. All rights reserved.

Preface

About this Document

This document describes about the Barefoot
TM

controller based Jasmine OpenSSD

platform’s hardware, software, and SSD software development. The main contents

of this document are as follows:

 Characteristics of the Jasmine board which is the reference board for the Jasmine

OpenSSD platform

 Architecture of Indilinx Barefoot
TM

SSD controller

 SSD firmware’s characteristics on Jasmine OpenSSD platform

 Jasmine OpenSSD platform’s SSD software structures and API introduction

Contents

Chapter 1. Jasmine OpenSSD Platform Specification

This chapter explains the Jasmine board’s hardware

architecture.

Chapter 2. Indilinx Barefoot
TM

SSD Controller Specification

This chapter explains the hardware architecture of the Barefoot controller and

internal controllers.

Chapter 3. Jasmine OpenSSD Platform Firmware Architecture

This chapter explains the SSD firmware of the Jasmine board.

Chapter 4. Jasmine OpenSSD Platform Software Specification

This chapter explains the structure and core API of the SSD software.

Further Reference

 Refer the documents at www.arm.com for the ARM7 processor architecture.

 Refer OpenSSD Project for detailed information about the Jasmine OpenSSD

platform.

 Refer OpenSSD project manual for technical information.

Feedback

 OpenSSD project website (http://www.openssd-project.org/)

http://www.arm.com/
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/Barefoot_Technical_Reference
http://www.openssd-project.org/

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 5

Copyright 2011 VLDB Lab. All rights reserved.

Chapter 1.

Jasmine OpenSSD Platform Specification

This chapter includes the hardware architecture specifications of the Jasmine OpenSSD

platform

 Jasmine OpenSSD Platform overview

 Jasmine Board

Jasmine OpenSSD platform includes the reference board (Jasmine board) loaded

with Indilinx’s high-performance Barefoot
TM

SSD controller, and SSD firmware

(Jasmine firmware) which supports SATA 2.0.

NAND flash module (Samsung MLC NAND flash, K9LCG08U1M)

Barefoot SSD controller

(ARM7TDMI-S core)

3Gbps SATA host interface

Mobile SDRAM

(64MB)

Mictor connector

JTAG debug port Factory mode jumper

UART port

 Figure 1) Jasmine OpenSSD Platform: Jasmine board containing Barefoot SSD Controller

1.1. Overview

1.2. Jasmine Board

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 6

Copyright 2011 VLDB Lab. All rights reserved.

 The below are the hardware features of the Jasmine board:

 Indilinx Barefoot
TM

SSD controller

o ARM7TDMI-S core running at 87.5Mhz

o DRAM access bus, flash/SATA control running at 175Mhz

o 96KB internal RAM

o SATA 2.0 host interface (3Gbps) with NCQ support

o Mobile SDRAM controller up to 64MB (running at up to 175MHz)

o NAND flash BCH 8/12/16 bit correction per sector

o SDRAM Reed Solomon 2 byte correction per 128 + 4 byte

o NAND flash controller up to 64 CE's (4 channels, 16 bits/channel, 8 banks/channel)

o Separate DRAM access bus for transferring data between NAND flash memory and

DRAM buffer

o Supports various NAND flash memory chips from different vendors such as Samsung,

Hynix, Toshiba, Micron, etc.

o Specialized hardware for buffer management and memory utility functions

o Debugging/monitoring aids

– JTAG

– UART

– 1 LED and 6 GPIO pins

– Mictor connector to NAND flash signals for logic analyzer

– Separate current measurement points for core, I/O, SDRAM, and NAND

 Mobile SDRAM

o 64MB from Samsung (subject to change)

 8 NAND flash memory slots (DIMM)

o 64GB from Samsung (subject to change)

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 7

Copyright 2011 VLDB Lab. All rights reserved.

1.2.1. Indilinx BarefootTM SSD controller

Chapter 2 describes the specifications of the Indilinx Barefoot SSD controller.

1.2.2. Factory Mode Jumper

Jasmine board contains the Factory mode jumper, connected to the Barefoot controller

GPIO #0 pin. Once the power is on, the CPU address space 0 mapped to the ROM

initiates the ROM code. The ROM code initializes the hardware and checks the

condition of GPIO #0. Depending on the GPIO pin value, the next instruction can differ as

below:

 If the value of the GPIO #0 equals 0 (Jumper placed at Normal mode)

ROM code identifies the address and numbers of the installed NAND flash, reads the

firmware image from block #0 and finally loads it to SRAM. Then, address remap

operation called as ‘jump’ moves the CPU address space 0 from ROM to SRAM. Thus,

initiates the firmware. Firmware loading halts and the board goes to the Factory mode,

if the contents of block #0 is missed or corrupted or if the page #4 signature

(0xC0C2E003) of the block #0 is lost.

 If the value of the GPIO #0 equals 1 (Jumper placed at Factory mode)

ROM code initiates the SATA interface and waits for the commands from install.exe.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 8

Copyright 2011 VLDB Lab. All rights reserved.

Chapter 2.

Indilinx Barefoot
TM

SSD Controller Specification

OpenSSD platform’s Indilinx Barefoot
TM

controller is ARM based SATA controller, which is

currently loaded on various SSD products. This chapter specifies the hardware architecture

of the Barefoot Controller. This chapter describes the following elements:

 Indilinx Barefoot controller architecture

 Memory map

 NAND flash controller (FCP, WR & BSP)

 SATA controller (NCQ, SATA event queue)

 DRAM host buffer & Buffer manager

 Memory utility

 Interrupt controller

Figure 2 shows Jasmine platform’s hardware architecture as a diagram.

 Figure 2) Jasmine OpenSSD Platform architecture

Barefoot controller is an ARM based SATA-compatible SSD controller loaded on

various SSD products. Barefoot controller containing the 16/32-bit ARM7TDMI-S RISC

microprocessor of the ARM Ltd. ARM7TDMIS-S is implemented as von Neumann

architecture and also contains an AMBA bus inside.

2.1. Hardware Architecture

APB Bridge

SRAM

(96KB)

Controller

ROM

Controller

ARM7TDMI-S

Core

NAND Controller
SATA

Device

Memory Utility

INDILINX
Barefoot

TM
Controller

AHB

DRAM Access Bus

UART
Clock

Generator

GPIO

Timer

WDT

Buffer

Manager

DRAM

Controller

PMU

ICU

JTAG

NAND Flash

SATA Host interface

DRAM

JTAG debug port

A
P

B

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 9

Copyright 2011 VLDB Lab. All rights reserved.

p(m)

＂High＂

IO[0..7]

...

8
IO Bus

Virtual

Page

size

16

...

IO[8..15]
8

＂Low＂ b(0) b(1) b(n-1)

Virtual block size

(2-plane mode)

NAND

Flash

controller

IO Bus

...

...

...

B0 B1

C0 C1

D0 D1

B7

C7

D7

Barefoot controller is composed of 96KB SRAM, system manager (SDRAM/NAND

controller), buffer manager, SATA 2.0 host interface, clock generator, UART, timer, WDT

(Watchdog timer), PMU (Power Management Unit), ICU (Interrupt Control Unit), and JTAG.

Barefoot controller controls various external components (SLC/MLC NAND flash, Mobile

DRAM, and more).

2.1.1. NAND Flash Architecture

NAND flash architecture of the Barefoot controller is designed as multichannel and in

a multi-way, to provide high bandwidth of SSD. Because, each channel connects to

a NAND flash memory chip in each way to perform IO operations at the bank level.

Way

Figure 3) NAND flash architecture of the Jasmine OpenSSD platform

As shown in the left side of the figure 3, NAND flash architecture of the Jasmine

platform contains four channels, which can operate in an independently parallel way.

There are eight banks in each channel, composed of two hardware connected

NAND flash chips and input and output of these banks comes through 16-bit IO

bus. Flash controller controls the NAND flash through some control pins including

CE input pin, R/B output pin, etc.,

NOTE: Actually, CE pin has two pins, which controls two chips. Both the pins should

either be enabled or disabled at a time (c.f it is possible to enable/disable a specific

chip only. Refer the FO_H, FO_L options in Table1).

Eight banks connected to one channel shares the IO bus, but the IO operation can be

performed on two banks at the same time. However, internal cell operation of the NAND

flash chip can perform parallel IO operations on all the banks.

... A7

p(0)

p(1)

...

p(m-1)

C
h

a
n

n
e

l

A0 A1

CE

RB

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 10

Copyright 2011 VLDB Lab. All rights reserved.

Flash

Memory

Chip

“High"

Flash

Memory

Chip

“Low”

The flash controller has only one R/B output pin per 2 banks which resides in one

channel, maximum of 4 banks can perform interleaving IO at the same time. For

example, in case of channel A, one R/B output pin is connected with A0/A4, A1/A5,

A2/A6 and A3/A7 banks. Therefore, the cell operation is unable to perform at the

same time for the bank A0 and A4.

Figure 4 shows the process of logging 512B data to a specific bank. The chip transmitting

upper byte of 2 bytes named as ‘high’. Contrary, ‘low’ is the name of the chip

transmitting the lower byte of two bytes. From the perspective of the firmware, these

two chips are considered as virtual, and the virtualization is done by Barefoot

controller.

DRAM buffer data

35 31 82 4E BC 5A E0 02 AA C9....

512 bytes

Flash Memory Chip “Low”

8

IO [0..7] 35

82

BC

E0

8

IO [8..15] 31

4E

5A

02

35 82 BC E0 AA....

256 bytes

Flash Memory Chip “High”

31 4E 5A 02 C9....

AA C9

: :
256 bytes

 Figure 4) Bank interleaved operation

The command unit of the firmware to hardware is a page and the page(s)

virtualized by the hardware called as a Virtual page (VPAGE). As explained, one

page of the low chip and one page of the high chip always receives the read/write

operation at the same time, so the size of the virtual page is 2 times the size of the

physical page.

Almost every flash memory supports ‘2-plane mode’ feature, which is an

acceleration feature that ties two pages as a single page making read/write on two

pages at the same time. From the perspective of the firmware, the number of page

decreases to half and the size of one page becomes twice (because two pages from

different blocks tied as one page and the number of pages per block remains the

same. Only the total number of blocks decreases to half). Barefoot controller also

supports 2-plane mode. As a result, on Jasmine platform, virtual page size is

doubled the physical page size in 1-plane mode. Where as in 2-plane mode, size

of virtual page is four times the physical page size.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 11

Copyright 2011 VLDB Lab. All rights reserved.

Block erase operation, same as the read/write is also the object of virtualization.

Therefore, in 1-plane mode, virtual block size is twice the physical block size and in 2-

plane mode, virtual block size is four times the physical block size.

In order to maximize the IO parallelism on Jasmine platform, enable both of the

NAND flash chips. However, by selective enabling of these chips (FO_L, FO_H), the

platform is forced to ignore the command/input signal from flash controller. For

example, from Figure 4, activates the high chip when the flash command delivers

FO_H option and the data logging occurs only on Low chip. In case of read

operation, unpredictable values can be read from high chip and is ignored for a

write operation.

ECC/CRC engine will not perform its operation to a specific chip, IO operation with

activated FO_L or FO_H option will cause “uncorrectable data corruption” interrupt.

To avoid this kind of interrupt, skip the FO_E option while delivering flash command.

NOTE: Refer ‘Jasmine board schematic’ tab and ‘NAND flash module schematic’ tab

in the OpenSSD Project website for the detailed explanation of hardware design of

the Jasmine board.

NOTE: Refer 2.3.1 section of this document for information about Flash Command

Port (FCP).

0xFFFF_FFFF

Factory mode Normal mode

0xFFFF_FFFF

0x8500_0000

0x8300_0000

0x7000_0000

0x6000_0000

0x5000_0000

0x4800_0000

0x8500_0000

0x8300_0000

0x7000_0000

0x6000_0000

0x5000_0000

0x4800_0000

Interrupt controller

GPIO

BS (SATA controller)

FREG (Flash controller)

MREG (Memory utility)

DRAM controller

DRAM

0x4000_0000

0x1000_0000

0x4000_0000

0x1000_0000

ROM

SRAM

0x0000_0000 0x0000_0000

Figure 5) Memory Map of the Barefoot Controller

2.2. Memory Map

Interrupt controller

GPIO

BS (SATA controller)

FREG (Flash controller)

MREG (Memory utility)

DRAM controller

DRAM

SRAM

ROM

http://www.openssd-project.org/wiki/Downloads#Jasmine_Hardware_Schematics

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 12

Copyright 2011 VLDB Lab. All rights reserved.

 ROM has Various codes for ‘Factory mode’ booting.

NOTE: Factory mode is a firmware installation mode on Jasmine board. Booting with

Factory mode will execute the code saved in ROM, and the user can install binary

image of the firmware and metadata for firmware operation. Jasmine firmware logs this

information on VBLK #0. If the Jasmine board power is on, after firmware installation,

bootloader will load the logged firmware image from VBLK #0 and then performs the

firmware operations.

In this mode, ROM maps to the address 0x00000_0000 and proceeds with codes for

firmware installation. The ‘Normal mode (Non-factory mode)’ interchanges the ROM

memory address and SRAM memory address.

In Factory mode, SRAM is mapped to the address 0x1000_0000 and loads the ROM

code. Where as in Normal mode, bootloader, main firmware image and ZI/RO/RW

data of the firmware are loaded.

On the other hand, SDRAM, as shown in Figure 6, splits into buffer space and FTL

metadata space. DRAM buffer, divided into SATA read/write buffer and copy buffer.

The data inside each buffer becomes input/output of the flash memory by DMA

controller. SATA read/write buffer stores the user data request upon receiving at SATA

event queue. Copy buffer, used for copy-back and modified copy-back command.

0xFFFF_FFFF

0x5000_0000

0x4000_0000

0x1000_0000

0x0000_0000

 Figure 6) Memory map (DRAM segmentation)

SATA Read buffer

SATA Read buffer contains the user data, which reads from the NAND flash. This

buffer is loaded with the data requested by the hosts and the SATA controller

delivers the data to the corresponding host.

(omitted)

DRAM

(FTL metadata)

DRAM

(buffer)

(omitted)

SRAM

...

Copy buffer

SATA write buffer

SATA read buffer

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 13

Copyright 2011 VLDB Lab. All rights reserved.

This buffer only stores user data and not used to store any kind of internal data

like mapping table.

SATA Write buffer

SATA controller loads the user data into this buffer, FTL writes the user data on to the

NAND flash.

Copy buffer

FC_CPBACK and FC_MODIFIED_CPBACK commands are used by this buffer to

copy page X’s data to page Y, which are existing on the same plane of the

NAND flash memory chip.

DRAM Controller DRAM

Pi

Pj

NAND Flash

 Figure 7) Copy buffer for copy-back operation

Copy buffer for page copy operation works the same way as the primitive operation

of the NAND flash memory. However, using Copy buffer check the ECC validity

right before the page copy. Figure 7 shows the FC_CPBACK operation. To copy a

page from Pi to Pj, which are in the different blocks but on the same plane, first

loads the data to the internal page register. Then, performs ECC check to validate

the data in the internal temporary buffer and copy buffer of the DRAM. If ECC

correction is required, then create a new ECC for Copy buffer and, copy to Pj in

order of ③, ④. In case if ECC correction is not needed then skip the step ③ and

directly copy the data in the page register from Pi to Pj by step ④.

NOTE: Apart from the SATA read/write and Copy buffers, Firmware can use the

remaining space in the DRAM.

Internal buffer Copy buffer

CLEAN

for ECC correction
②

③

② ③

Plane #0

①

④

Page register

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 14

Copyright 2011 VLDB Lab. All rights reserved.

(omitted)

BSP_ECCNUM

BSP_CMD_ID

BSP_DST_ROW_L

BSP_DST_ROW_H

BSP_DST_COL

BSP_ROW_L

BSP_ROW_H

BSP_COL

BSP_DMA_CNT

BSP_DMA_ADDR

BSP_OPTION

BSP_CMD

760

190

BSP of

bank #0

48 Byte

x 32 banks

160

4 Byte

Address space 0x4800_0000 mapped to the DRAM memory controller register and the

address space 0x5000_0000 mapped to the memory utility register set (MREG). DMA

works based on the register value mentioned in this section.

NOTE: The hardware memory utility in the Barefoot controller allows the Barefoot

controller to support DMA memory copying between DRAM and SRAM and quick

memory searching feature with its H/W engine.

SATA controller register set (BS) mapped to the address space 0x7000_0000 and address

0x8300_0000 is allocated for GPIO pin mapping.

The Interrupt register set mapped to the address space 0x8400_0000. Interrupt

controller handles the interrupts from the SATA/Flash/DRAM controller and from the

components connected to the APB (Advanced Peripheral Bus).

Finally, flash controller register set mapped to the address space 0x6000_0000. Flash

controller uses special architectures like FCP, WR, and BSP, in order to perform IO

commands on flash memory. Based on the register feature, each register mapped to

this area respectively. Especially, as shown in Figure 8, Barefoot controller has extra

space for 32 banks, in order to supply large size SSDs. Register sets are described in

detail in Chapter 2.3.

0x6000_0160

0x6000_0

0x6000_0

8byte

x 32 banks

0x6000_0034

4 Byte

0x6000_0

Figure 8) Memory map (FCP & BSP)

 FCP_ISSUE
FCP_CMD_ID

FCP_DST_ROW_H

FCP_DST_ROW_L

FCP_DST_COL

...
FCP_ROW_H
FCP_ROW_L

FCP_COL

FCP_DMA_CNT

FCP_DMA_ADDR

FCP_OPTION

FCP_BANK

FCP_CMD

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 15

Copyright 2011 VLDB Lab. All rights reserved.

NAND flash controller uses FCP (Flash Command Port), WR (Waiting Room), and BSP

(Bank Status Port) to deliver its IO requests efficiently in multiple bank environment.

FCP

(Flash Command Port)

WR

(Waiting Room)

BSP

(Bank Status Port)

Issue by

FTL

 Figure 9) FCP, WR and BSP

The flow of requesting an IO operation is as follows: First, set the IO commands like

page read/write or block erase on FCP. Then, WR receives the commands issued by the

FTL. Hardware delivers the IO command waiting in the WR to the corresponding bank.

If the state of the corresponding bank is busy then the command waits in the WR until

the previous IO command completes. BSP logs the IO command delivered to the flash.

BSP_INTR register logs the state information, if any interrupt occurs.

2.3.1. FCP (Flash Command Port)

Set the FCP to deliver the commands like page read/write or block erase on flash

memory. FCP register sets have the options: flash command, bank number,

row/column address, buffer address and flag. First, Set the FCP to deliver the

commands like page read/write or block erase on flash memory. FCP registers to be

set first have options like flash command, bank number, row/column address, buffer

address and flag. After setting the FCP registers, the issue performed will be deliverd to

WR with the corresponding FCP.

FCP register set is explained in the below Table 1. FCP register set configures only when

FTL requests IO related commands to flash memory in LLD (Low-Level device Driver)

level, which is known as flash memory interface.

2.3. NAND Flash Controller

Bank n-1

Accept by

H/W

Bank 0

Queue depth #1

Bank 1

...

FCP_CMD

(omitted)

FCP_ISSUE

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 16

Copyright 2011 VLDB Lab. All rights reserved.

Table 1) FCP register set

Register Address Description

FCP_CMD 0x6000_0034 NAND flash command configuration

0x00 = FC_WAIT 0x01 = FC_COL_ROW_IN_PROG

0x02 = FC_COL_ROW_IN 0x03 = FC_IN

0x04 = FC_IN_PROG 0x09 = FC_PROG

0x0a = FC_COL_ROW READ_OUT 0x0b = FC_COL_ROW_READ

0x0c = FC_OUT 0x0f = FC_COL_OUT

0x10 = FC_READ_ID 0x12 = FC_COPYBACK

0x14 = FC_ERASE 0x15 = FC_GENERIC

0x16 = FC_GENERIC_ADDR 0x17 = FC_MODIFY_COPYBACK

Note: Refer to ./include/flash.h for the operation sequence of the

above flash command codes.

FCP_BANK 0x6000_0038 Bank number (max: NUM_BANKS)

0x3F = auto-select mode(AUTO_SEL)

Note: If set to AUTO_SEL, once issues the FCP command, the first idle

bank will take the contents of WR. This supports parallelism.

FCP_OPTION 0x6000_003C FCP option flag configuration.

0x001 = FC_P 0x006 = FO_E

0x008 = FO_SCRAMBLE 0x010 = FO_L

0x020 = FO_H 0x040 = FO_B_W_DRDY

0x080 = FO_B_SATA_W 0x100 = FO_B_SATA_R

FO_P: 2-plane mode

FO_E: ECC & CRC hardware enable

FO_SCRAMBLE: enable data scrambler

FO_L: disable LOW chip

FO_H: disable HIGH chip

FO_B_W_DRDY: ready data to write in write buffer

FO_B_SATA_W: release write buffer when FCP command is completed

FO_B_SATA_R: release read buffer when FCP command is completed

note: Refer to ./include/flash.h, for detail explanation of above

flash option flags.

FCP_DMA_ADDR 0x6000_0040 Buffer address for DRAM to flash or flash to DRAM.

Note: Buffer address must be a multiple of 512B.

FCP_DMA_CNT 0x6000_0044 Data size (Unit: Byte, must be a multiple of 512B)

FCP_COL 0x6000_0048 Location of the starting column (Unit: Byte, In case using FO_E, must be a

multiple of 512B, max: SECTORS_PER_PAGE - 1)

FCP_ROW_L

FCP_ROW_H
0x6000_0048

0x6000_004C
Target page number, based on total virtual page numbers.

(max: PAGES_PER_VBLK - 1)

Number of this register is exactly same as the number of the banks.

H/L chip means ‘High’ and ‘Low’ respectively.

(Generally, both H/L chip uses same row number)

Note: The reason for using the same number of banks and registers in

auto-select mode is to assign each bank’s target page location.

note: copy-back 명령일 경우는 source row 가 됨 FCP_DST_COL 0x6000_0118 Starting column location of the destination virtual page.

(Set when using ‘copy-back’, which is internal command of NAND flash)

FCP_DST_ROW_L

FCP_DST_ROW_H
0x6000_0150

0x6000_0154

Virtual page number, which will be the destination.

(Set when using ‘copy-back’, which is internal command of NAND flash)

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 17

Copyright 2011 VLDB Lab. All rights reserved.

FCP_CMD_ID 0x6000_0158 FCP command id

Register used in debugging mode, when delivered to WR, hardware

numbers its command sequence automatically.

FCP_ISSUE 0x6000_015C A register to deliver FCP command to WR

When a value is written on this register, corresponding FCP command

is issued to WR.

2.3.2. WR (Waiting Room)

Commands related to WR, before delivered to the flash memory waits here and

contains the same information as FCP. Flash controller checks the state of the target

bank, if the state is idle then delivers the content of WR to the bank, if the state is busy

then waits on WR. Figure 9 shows that WR can handle only one FCP request at a time.

 Table 2) WR register set

Register Address Description
WR_STAT 0x6000_002C Register to check the state of the WR.

Note: The below condition shows that WR is empty

(WR_STAT & 0x0000_0001 == 0)

WR_BANK 0x6000_0030 In case delivered FCP to NAND flash with Auto-select

mode, this register takes that command and checks

the bank number

NOTE: If a new FCP command is issued while a FCP command already exists in WR,

H/W is not aware weather the delivered command is performed or not. Therefore,

firmware first checks WR_STAT register, if the register is in idle state then only

delivers new flash command.

2.3.3. BSP (Bank Status Port)

As shown in Figure 8, BSP is composed of the FCP issued flash command information

and added information during that issue i.e., BSP contains information from WR. BSP

exists in all the 32 banks, from 0x6000_0160 to 0x6000_070, with a size of 48 bytes.

BSP contains the information of the last performed operation and is very useful for

debugging.

BSP_INTR register and BSP_FSM register stores the interrupts occurred during internal

flash operation. BSP_INTR stores the cause of the interrupt occurrence as shown in

Table 3, and BSP_FSM stores the current condition.

NOTE: Only firmware can clear the BSP_INTR register.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 18

Copyright 2011 VLDB Lab. All rights reserved.

Table 3) BSP_INTR & BSP_FSM register

Register Address Description
BSP_INTR 0x6000_0760:

0x6000_0780
Bank interrupt info. (1Byte)

separately exists in every Bank

0x01 = FIRQ_CORRECTED

0x02 = FIRQ_CRC_FAIL

0x04 = FIRQ_MISMATCH

0x08 = FIRQ_BADBLK_L 0x10 = FIRQ_BADBLK_H

0x20 = FIRQ_ALL_FF 0x80 = FIRQ_ECC_FAIL

0x82 = FIRQ_DATA_CORRUPT

BSP_FSM 0x6000_0780:

0x6000_0800
Bank FSM (Finite State Machine) info. (1Byte)

Same as BSP_INTR, separately exists in every bank.

0x0 = idle others = no idle

Barefoot controller itself contains the SATA controller, which manages the data

communication between host and device. SATA controller manages a separate command

queue (event queue) different from NCQ (Native Command Queuing), which delivers the

IO commands efficiently to FTL.

NOTE: Refer to OpenSSD community for more technical information about SATA

Operation.

2.4.1. SATA Protocol

The IO commands sent to the SSD by the hosts are overtook by SATA protocol and the

SATA protocol sends a response to the host automatically. If the command is a write,

then the firmware requests to start the data transfer and the hardware handles this

data transfer process automatically.

If any exception arises while performing the IO operation, the hardware will forward

the same automatically. If the IO operation is success without exception, then the

hardware will send the commit message automatically.

2.4.2. SATA NCQ

SATA NCQ is a command protocol for SATA, which can receive multiple commands

simultaneously from one drive.

NCQ of the Barefoot controller with SATA 2.0 can receive maximum of 32 host

commands and follows FIFO structure. Actually, the commands delivered to NCQ are

not transferred. From the host perspective, unfinished commands wait in NCQ. These

commands are moved to the SATA event queue and are delivered to the FTL.

2.4. SATA Controller

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 19

Copyright 2011 VLDB Lab. All rights reserved.

...

t

128

cmd

2.4.3. SATA Event Queue
SATA event queue, from the host perspective, manages only the queueing feature of the

already finished SATA data transfer commands. As the actual IO operation has not yet

occurred, these commands wait for the transfer process from DRAM to NAND flash.

As the below Figure 10 shows, SATA event queue can contain maximum of 128

commands same as the SATA NCQ which operates FIFO order. FIQ interrupt delivers the

host commands and are removed when FTL take the corresponding commands.

SATA

event queue

ail

NCQ

head

Figure 10) SATA NCQ & event queue

The below mentioned issues may occur when SATA event queue operates in FIFO

order:

1. Host waiting time for the Read command can be longer.

2. During a Read command, while the data is transferring from DRAM to host, there is

a high probability that FTL and NAND flash memory could be in idle state degrading

the performance.

To overcome these issues, the SATA event queue performs the READ operation first

and then the WRITE operation. However, this approach can lead to data coherence

problem for “read-after-write” operation on some addresses. For example, while

<WRITE, lsn=3> command is stored in the SATA event queue, if the FTL handles

the <READ, lsn=3> command first, old data is retrieved from the NAND. Therefore,

hardware applies the history log search to ensure the data coherence. To avoid these

kind of issues, hardware handles the same in the sector duplication case.

DRAM host buffer, buffers the user data from the IO operations of the SATA event queue.

It is branched into SATA read buffer and SATA write buffer. SATA read buffer buffers the

data from the flash memory during the host read request. SATA write buffer buffers the

data from the flash memory during the host write request. These buffers operate in a

circular format. Hardware buffer manager controls the flow control of the DRAM host

buffer and the SATA controller.

2.5. DRAM Host Buffer & Buffer Manager

Host

FTL

32

cmd

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 20

Copyright 2011 VLDB Lab. All rights reserved.

2.5.1. SATA Read/Write Buffer

The basic frame unit size of the SATA read/write buffer is same as the VPAGE size

(e.g., 4~32KB). Each buffer size differs by the FTL metadata inside the DRAM. Normally,

SATA read buffer uses 1MB and SATA write buffer uses few tens of MB.

NOTE: DRAM host buffer space depends on the FTL metadata size. Therefore, listed

in the FTL header file. (ftl.h)

 Table 4) SATA register for read/write buffer

Register Address Description
SATA_BUF_PAGE_SIZE 0x7000_00B4 SATA buffer frame size (default size = BYTES_PER_PAGE)

SATA_WBUF_BASE

SATA_RBUF_BASE
0x7000_0170:

0x7000_0174
base address of SATA write/read buffer

SATA_WBUF_SIZE

SATA_RBUF_SIZE
0x7000_0178

0x7000_017C
Number of SATA write/read buffer frames

SATA_RESET_WBUF_PTR

SATA_RESET_RBUF_PTR
0x7000_0184

0x7000_0188

Firmware can directly use the pointer reset register of the

SATA write/read buffer frame for buffer management.

SATA_WBUF_PTR

SATA_RBUF_PTR
0x7000_0194

0x7000_0198
Pointer of the SATA write/read buffer (id #)

SATA_WBUF_FREE 0x7000_019C Number of free buffer frames of the SATA write buffer

SATA_RBUF_PENDING 0x7000_01A0 Number of pending buffer frames of the SATA read buffer

The signal communication between SATA, Buffer Manager and NAND Controller

handles the actual management of the SATA read/write buffer. In case if needed,

firmware can also manage the SATA read/write buffer.

Refer to the chapter 2.5.2 for more information about SATA read/write buffer

management.

2.5.2. Buffer management

DRAM host buffer is managed by the adjustment between SATA, hardware buffer

manager and pointers of FTL (i.e., sata_xxx_ptr, bm_xxx_limit,

ftl_xxx_ptr). Meanwhile, as explained in the previous chapter, DRAM host buffer

works in the circular buffer format, each buffer frame pointers must grow in an

ascending order.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 21

Copyright 2011 VLDB Lab. All rights reserved.

SATA Read Buffer SATA Write Buffer

sata_read_ptr

bm_write_limit

bm_read_limit

ftl_write_ptr

sata_write_ptr

ftl_read_ptr

(4~32KB)

 Figure 11) DRAM Host Buffer Management

The order of the SATA read buffer management is mentioned below:

1. First, current buffer frame pointed by the ftl_read_ptr is an address. When

flash controller delivers the read operation to the NAND flash, DMA loads the

data on the target page of the NAND flash.

2. Firmware increments ftl_read_ptr and handles next IO operation.

3. SATA controller passes the data loaded by the FTL to the host

sequentially by incrementing the sata_read_ptr.

Because of the bandwidth gap between flash memory and SATA, it is possible that

sata_read_ptr overtakes ftl_read_ptr and causes wrong data delivery to the

host. To avoid this problem, the pointer bm_read_limit managed by the buffer

manager, ensures the data copied completely from the NAND flash to the SATA

read buffer is delivered to the host. In other words, when the flash controller issues

host manager that a read operation of a specific bank is completed, then buffer

manager increments bm_read_limit pointer, which allows SATA controller to send

the data to the host resulted from the read operation.

NOTE: When the speed of the read operation from FTL to flash controller is too

fast, ftl_read_ptr can take over sata_read_ptr, resulting in a overwriting of

the undelivered host data. In order to prevent this problem, Firmware should

control the pointers. Make ftl_read_ptr not to take over sata_read_ptr. (c.f.

ftl_read() in ./ftl_tutorial/ftl.c)

SATA write buffer operation is same as SATA read buffer and is as follows:

1. SATA controller increments sata_write_ptr, the write

request of the host is queued on the event queue and the

host data is delivered to the SATA write buffer. Then DMA

delivers the data to NAND flash.

NAND

flash

NAND

flash

frame #0

 frame #1

...

...

...

...

...

...

...

...

 Virtual page size

(4~32KB)

frame #0

frame #1

 ...

...

...

...

...

 ...

...

Virtual page size

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 22

Copyright 2011 VLDB Lab. All rights reserved.

2. FTL receives write request from the event queue and delivers it to the flash

controller and increments ftl_write_ptr.

3. On completion of the data delivery to SATA write buffer, SATA controller issues

buffer manager, which makes the flash controller to log the host data on the NAND

flash.

There is a problem of potential overwrite due to the slow programming speed of

the flash memory by tPROG (The user data which is not yet written to the NAND

flash could be overwritten by SATA, for other write request). To overcome this, the

bm_write_limit pointer on the SATA write buffer managed by the hardware

buffer manager, ensures the write operation by preventing sata_write_ptr to

outstrip the bm_write_limit.

Table 5, below shows the register set of the Buffer Manager. Flow control of the Buffer

Manager is done by intercommunicating with NAND controller, when required can be

done by firmware using these registers.

 Table 5) Buffer Manager Register

Register Address Description
BM_WRITE_LIMIT

BM_READ_LIMIT
0x5000_0000:

0x5000_0004
SATA read/write limit pointer (READ-ONLY) of the Buffer

Manager 이 Actual flow control is done by this register value

(Refer to ./ftl_dummy/ftl.c for example)

BM_STACK_RESET 0x5000_0008 Resets BM read/write limit pointer

0x01 = reset BM write limit to BM_SATA_WRSET

0x02 = reset BM read limit to BM_SATA_RDSET

BM_STACK_WRSET 0x5000_0028 Register to reset the BM write limit

Logs SATA write buffer id on this register

BM_STACK_RDSET 0x5000_002C Register to reset the BM read limit

Logs SATA read buffer id on this register

Memory utility handles the data communication between SRAM and DRAM. Also

performs iterative memory operations like memory initialization (e.g., mem_set) and

acceleration of searching on specific memory.

Barefoot controller uses separate ECC engine to increase the integrity of DRAM data.

4 bytes of DRAM ECC information is created per DRAM_ECC_UNIT (128 Byte). Below

is the sequence of data logging from SRAM to DRAM.

1. Reads 132B (128Byte data + 4Byte ECC parity info) from DRAM and stores at the

internal temporary memory of the Barefoot controller.

2.6. Memory Utility

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 23

Copyright 2011 VLDB Lab. All rights reserved.

2. In point 1, when needed performs ECC data correction on that temporary memory. (c.f.

In fact, DRAM is a memory of high-integrity with a very low ECC correction probability)

3. Reads the data from SRAM and corrects the content of the temporary memory

4. Creates new ECC parity for 128 Byte and logs 132Byte on DRAM.

NOTE: When CPU directly modifies the DRAM data, there is a possibility of ECC

information corruption or loss by memory utility. So, the communication between

SRAM and DRAM must done via memory utility (./include/mem_util.h).

SDRAM_INTSTATUS register of the SDRAM controller records the interrupts occurred

during memory utility operation.

 Table 6) Memory Utility Register Set

Register Address Description

MU_SRC_ADDR 0x5000_0010 Source memory address. Sets when reads the data from DRAM

MU_DST_ADDR 0x5000_0014 Destination memory address. Sets when writes the data to DRAM

MU_VALUE 0x5000_0018 Logs new data

MU_SIZE 0x5000_001C Size of the memory space to be set or searched

Note: In case of mem_search, max 32768 Byte

MU_RESULT 0x5000_0020 Result value of the memory operation

0xFFFFFFFF means currently performing a memory operation

MU_CMD 0x5000_0024 Memory utility command code

MU_UNITSTEP 0x5000_0030 Set with unit ‘step’ in case of iterative memory operation.

note: SETREG(MU_UNITSTEP, MU_UNIT_8 | 1);
SETREG(MU_UNITSTEP, MU_UNIT_16 | 2);

SETREG(MU_UNITSTEP, MU_UNIT_32 | 4);

 Table 7) SDRAM Controller Register Set

Register Address Description

SDRAM_INTSTATUS 0x4800_001C Interrupt state information caused by DRAM controller

0x01 = ECC fail 0x02 = ECC correction

0x04 = Address Overflow 0x08 = Deadlock

Interrupt controller receives interrupt requests from external devices and internal

devices like SATA, flash memory, DRAM, UART, Timer, WDT. Then, issues CPU to

handle these interrupts.

2.7. Interrupt Controller

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 24

Copyright 2011 VLDB Lab. All rights reserved.

Below Table 8, shows register set of interrupt controller. Firmware configures the

devices detected on APB_ICU_CON register. When a hardware interrupt occurs during

runtime, refers APB_INT_STS to know from where the interrupt came from. Then it

performs the corresponding interrupt handling operation.

Table 8) Memory Utility Register Set

Register Address Description

APB_ICU_CON 0x8500_0000 FIQ interrupt configuration

APB_INT_STS 0x8500_0004 Interrupt state information. From this register, firmware can find

the interrupt caused device.

0x001 = INTR_SATA 0x002 = INTR_FLASH

0x004 = INTR_SDRAM 0x008 = INTR_UART_TX

0x010 = INTR_TIMER_4 0x020 = INTR_TIMER_3

0x040 = INTR_TIMER_2 0x080 = INTR_TIMER_2

0x100 = INTR_TIMER_1 0x200 = INTR_WATCH_DOG

0x400 = INTR_EXT

APB_INT_MSK 0x8500_000C IRQ interrupt configuration

Note: When configured with a value, allows interrupts from that

device

APB_PRI_SET1 0x8500_0054 -

APB_PRI_SET2 0x8500_0058 -

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 25

Copyright 2011 VLDB Lab. All rights reserved.

Chapter 3.

Jasmine OpenSSD Platform Firmware Architecture

This chapter specify the internal structure of SSD firmware on Jasmine OpenSSD platform.

Main firmware of the Jasmine OpenSSD platform is composed of three main

components, HIL (Host Interface Layer), FTL (Flash Translation Layer) and FIL (Flash

Interface Layer).

HIL manages SATA host commands and buffer management. The IO requests issued by

the host to the SATA controller are pushed to the SATA event queue and are handled

later by the FTL sequentially.

FTL is a software layer, views flash memory as a block device like hard disk. Generally,

FTL supports address translation, garbage collection and wear leveling features. FTL

handles the IO request by passing it to the flash memory. Various kinds of the

existing FTLs optimizes the FTL to improve the performance and safety. On the

Jasmine firmware, Tutorial FTL, Greedy FTL and Dummy FTL are implemented.

FIL layer handles flash memory. Operations of the delivered flash commands are

performed by LLD (Low-level device driver) and the exceptions occurred during the

normal operation are detected by the interrupt controller and finally, FTL handles the

interrupts.

3.2.1. Hardware Event Queue

On Jasmine firmware, SATA event queue (Refer to 2.4.3) is implemented as a

hardware event queue. READ/WRITE ATA commands are managed by hardware event

queue and are handled in HIL (Host Interface Layer) main function and delivers to FTL.

The procedure of handling the ATA command by the event queue is described in the

below steps.

1. Transfers the ATA command from host to the Jasmine board

2. Calls the FIQ handler if any FIQ interrupt occurs from SATA host interface

3. Reads the corresponding command from FIS (Frame Information Structure).

Extract the cmd_type, lba, sector_count values from the requested

command.

4. In case of READ/WRITE operation (CCL_FTL_D2H/CCL_FTL_H2D), add the

corresponding command (handle_got_cfis() from

./sata/sata_isr.c) to the hardware event queue.

5. For the rest of the cases, e.g. slow commands like TRIM, save at

the variable named g_sata_context.slow_cmd.

3.1. Firmware Overview

3.2. Host Interface Layer

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 26

Copyright 2011 VLDB Lab. All rights reserved.

6. Handles the command in firmware main function (Main()

of ./sata/sata_main.c)

o If there exist a read/write request in the event queue, pick out and handle

one by one

(eventq_get() of ./sata/sata_main.c)

o If there is no read/write request available, just handle the command saved in

the variable named slow_cmd

FTL (Flash Translation Layer) is a software layer that helps the host to see the flash

memory as a hard disk. FTL retrieves the read/write request from the hardware event

queue and passes IO commands to flash controller sequentially.

3.3.1. FTL Protocol Interface

FTL protocol interface is a set of functions to communicate using messages with

SATA host interface. This chapter describes the 4 main protocol interface functions

(ftl_open, ftl_read/ ftl_write, ftl_flush).

NOTE: Refer to chapter 4.2 for FTL protocol API function specifications.

ftl_open

This function loads the FTL to receive the host IO requests, after the Jasmine board initializes.

1. When the firmware installation initiates, reads the scan list logged on VBLK

#0 to check the initial bad blocks.

2. Sets NAND flash memory to base condition to handle the host IO requests.

It also includes the erase operation of the entire blocks to log user data.

3. Loads FTL metadata on SRAM or DRAM from flash memory that has

installed along with firmware or metadata logged at the power-off time.

4. Initialize the metadata managed by FTL including volatile variable.

5. Set the interrupt options of the flash controller.

ftl_read

An API to handle host read request delivered by the event queue. Through the

mapping information, transfers the read request to the flash memory chip. This

flash memory chip has valid pages with its unit size as virtual page size and

modifies the SARA read buffer pointer managed by the FTL.

ftl_write

An API to handle host write request delivered by the event queue. First, scan for

the free pages and write the new data. After write, modifies the mapping

information with the new page.

3.3. Flash Translation Layer

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 27

Copyright 2011 VLDB Lab. All rights reserved.

ftl_flush

This API logs the FTL metadata for POR/SPOR on NAND flash memory. When SATA

is in idle/standby state calls this API to maintain FTL metadata consistency and

makes POR possible.

3.3.2. Tutorial FTL

Tutorial FTL has implemented to help understanding the FTL operation principles on

Jasmine platform architecture. This FTL has very simple structure that uses page-level

mapping table and does not include FTL features like garbage correction, wear leveling

and POR. This chapter mainly explains the handling of read/write requests by FTL using

DRAM.

DRAM Usage

0xFFFF_FFFF

0x5000_0000

0x4000_0000

0x1000_0000

0x0000_0000

Figure 12) DRAM usage of Tutorial FTL

Dummy FTL allocates a separate ‘FTL buffer’ inside DRAM buffer space. This FTL

buffer is used as a temporary buffer when logging modified metadata on the Flash

memory or while reading logged metadata from flash memory.

DRAM FTL metadata space manages page mapping table (PAGE_MAP). PAGE_MAP

contains mapping information of page address to physical page address.

NAND Structure

Tutorial FTL manages flash memory as shown in the below Figure 13. VBLK #0 is

written by firmware installation function (install() of ./installer/install.c)

during firmware installation. This space stores the data (i.e., bad blk scan list, firmware

binary image) needed while FTL operates the firmware. Tutorial FTL uses the rest of the

space to sequentially log the user data excluding VBLK #0.

(omitted)

DRAM

(FTL metadata)

DRAM

(buffer)

(omitted)

SRAM

...

PAGE_MAP

...

FTL buffer

Copy buffer

SATA write buffer

SATA read buffer

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 28

Copyright 2011 VLDB Lab. All rights reserved.

VBLK 0 1 n

Scan list

...

User area

Size info. of

firmware image

Firmware

binary image

...

 Figure 13) NAND structure of Tutorial FTL

Address Mapping

Generally, FTL performs IO with VPAGE size as its unit, through <lsn,

sector_size> information delivered by the host. As discussed already, Tutorial FTL

manages mapping table in page-level. User data on flash memory can be accessed

with direct mapping without any searching process.

Below Figure 14, shows the address mapping sequence of Tutorial FTL. First, FTL

receives the read request for LPN 2 from SATA event queue. Then, receives the

mapping information of LPN through page mapping table (i.e., PAGE_MAP). This

information contains corresponding bank number of the LPN and VPN. Finally, FTL

transfers corresponding PPN user data by sending flash IO request to FIL.

 Figure 14) Address Mapping in Tutorial FTL

Read Operation

Tutorial FTL, as explained above, locates the physical location of the user data

through address mapping phase. In figure 15, step ① sends the read operation to

the flash controller and finally delivers user data to SATA read buffer. After that,

hardware notifies the buffer manager about the completion of the user data

transfer. Then buffer manager transfers the data in the DRAM buffer to SATA host,

as shown in step ②.

HIL FTL FIL

PAGE_MAP

NAND Flash

LPN <Bank#, VPN>

0

1

2 <1,10>

3

4

5

...

Hardware event queue

<READ, LPN = 50>

<WRITE, LPN = 10>

<READ, LPN = 2> 10

B
a
n

k
 1

B

a
n

k
 0

...

...

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 29

Copyright 2011 VLDB Lab. All rights reserved.

SATA Read Buffer NAND Flash

Pi

 Figure 15) Read operation in Tutorial FTL

Write Operation

Write operation comes with an additional read operation by its size. If an IO

operation performs with smaller size than VPAGE size, then loads old data from

flash memory to temporary buffer and merges it. Then finally performs the write

operation.

Below Figure 16, shows write operation with smaller size than VPAGE size. First,

same as read operation, FTL receives the write operation by polling hardware event

queue. Then access the page-mapping table to check whether the corresponding

page LPN data exists or not. If data exists for the corresponding LPN, loads rest of

the data excluding user data to SATA write buffer (like step ①). Like step ②,

hardware waits for new user data from the host. When new data comes, writes on a

new page. If no data exists or have to perform a write operation with only page

size, skip step ①.

SATA Write Buffer NAND Flash

Pi

P j

 Figure 16) Write operation in Tutorial FTL

①
Host

②

 Virtual page size

(4~32KB)

①

①
Host

②

③

 Virtual page size
(4~32KB)

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 30

Copyright 2011 VLDB Lab. All rights reserved.

The process of allocating free pages to write new data during Tutorial FTL write operation

improves parallelism as high as possible. Write operation on a LPN is not fixed to a

specific bank, the bank number is incremented by one after each write and logs the bank

number and VPN information on the address mapping table (This kind of write operation

can degrades the parallelism performance).

Tutorial FTL does not logs modified metadata on flash memory during write operation.

However, in order to perform error recovery, it should have enough metadata space

inside flash memory to log modified contents of the metadata periodically.

BSP Interrupt Handling

FTL handles the exceptions (e.g., ECC error, runtime bad block occurs, ETC) as hardware

interrupts encountered while flash memory handling the requests.

Issues a BSP interrupt when internal error occurs during flash memory handling the

request. Then flash controller issues corresponding interrupt to the hardware

interrupt controller. After that hardware interrupt controller issues ARM with IRQ

interrupt and then ARM calls IRQ interrupt handler (irq_handler()

in ./target_spw/misc.c).

If the interrupt is from flash controller, IRQ interrupt calls FTL interrupt service routine

(ftl_isr). Then, FTL checks interrupt register (BSP_INTR) for the reason of the

interrupt occurrence. Finally, FTL executes the corresponding exception handling

code.

3.3.3. Dummy FTL

Dummy FTL is a virtual FTL to check the speed of SATA and DRAM, implemented with

minimal code to handle host request from event queue and can never access flash

memory.

Actual Dummy FTL (./ftl_dummy/ftl.c) implementation does not perform

read/write from/to memory (in case of ftl_read/ftl_write). Dummy FTL includes

only the SATA read/write buffer pointer-moving feature, in order to make SATA and

FTL work normally.

FIL delivers the actual IO commands to flash memory from FTL. LLD sets the flash

commands (e.g. FCP) and delivers the IO commands to the flash memory.

3.4.1. Flash Command Issue

IO commands delivered to LLD are executed by the flash command delivery function

internally (flash_issue_cmd() in ./target_spw/flash.c). This function

delivers the configured FCP at LLD to WR.

This firmware provides 3 types of synchronous/asynchronous IO issues, as shown in

below Table 9. Using these issues, SSD IO handling increases the parallelism by

delivering IO to flash controller.

3.4. Flash Interface Layer

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 31

Copyright 2011 VLDB Lab. All rights reserved.

Table 9) FCP issue type

Type Value Description
RETURN_ON_ISSUE 0x0 When WR is empty, delivers FCP contents to WR

and return

RETURN_ON_ACCEPT 0x1 Bank gets the flash command delivered to WR and

do polling until its start and return

RETURN_WHEN_DONE 0x2 Waits until corresponding bank is done with flash

command and return

NOTE: FTL delivers the flash command. Do not deliver another flash command

while WR already contains waiting commands.

3.4.2. LLD (Low-level device driver)

LLD is an abstracted interface to set the flash commands on FCP and to deliver that

configured FCP to WR. This interface eases the firmware developers to implement

because there is no need to implement the configuration of flash controller register

every time while delivering the flash commands to flash memory. It makes the flash

memory viewed as a simple logical architecture composed of logical page and

logical block.

LLD performs flash commands with both VPAGE and VBLK, as its unit size. Some

typical examples are (partial) page read/program, block erase, simple copy-back, and

modified copy-bac, which are in API.

NOTE: Refer to chapter 4.4 for detailed usage of LLD API types.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 32

Copyright 2011 VLDB Lab. All rights reserved.

Chapter 4.

Jasmine OpenSSD Platform Software Specification

This chapter specify the firmware software of Jasmine OpenSSD platform. Firmware

software is composed of firmware source file, build script and firmware installation program.

This chapter details about the core modules of firmware API and includes following

contents.

 Jasmine firmware file structure

 Jasmine Firmware APIs (FTL protocol API/LLD API/Memory utility, etc.)

 Some important macros

4.1.1. File Hierarchy

Firmware header files and source files of the Jasmine OpenSSD platform are

mentioned in the below table.

Table 10) File hierarchy (some files are omitted)

Location File List Description
./ release_lock.inc

COPYING, HISTORY,

README

Debugging script file, Intellectual property rights and

revision history and build overview of the Jasmine

firmware

./build_gnu Makefile, ld_script

build.bat
Firmware build script using Code Sourcery G++

toolchain

 ./build_rvds armlink_opt.via

file_list.via

build.bat

RVDS compile environment configuration file and

firmware build script

./ftl_tutorial ftl.h, ftl.c Tutorial FTL related file folder

./ftl_greedy ftl.h, ftl.c Greedy FTL related file folder

./ftl_dummy ftl.h, ftl.c Dummy FTL related file folder

./sata sata_cmd.c

sata_identifiy.c

sata_isr.c sata_main.c

sata_table.c

SATA interface related source file folder

./installer ata_7.h, installer.c,

installer.sln,

ntddstor.h

Firmware install solution file. Creates install.exe

./include jasmine.h

mem_util.h

flash.h, peri.h

rom.h, etc.

Firmware source code related header file

./target_spw init_gnu.s,

init_rvds.s

flash_warpper.c

initialize.c

target.h

mem_util.c, flash.c,

uart.c etc.

Firmware startup code/Firmware initialization/

Memory utility/LLD API/UART/Timer utility, ETC.

./tc tc_synth.c Folder includes the test case for FTL code validation

4.1. Source File Description

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 33

Copyright 2011 VLDB Lab. All rights reserved.

4.1.2. Header File

Table 11) Jasmine firmware header file (some files are omitted)

Location File Description
./include jasmine.h Barefoot controller header file

- Defines page/block size following NAND spec

- Defines DRAM segmentation

mem_util.h Memory utility header file

flash.h Flash controller header file

- Defines flash controller register set including

FCP/WR/BSP

- Defines Flash command code

- Defines Bank interrupt flag

peri.h Defines Peripheral device register set

- Interrupt/DRAM controller, Buffer Manager

- GPIO/PMU/UART/Watch-dog/Timer/Clock, ETC.

hi.h Defines host interface data structure

Defines SATA spec command

ftl.h Defines FTL metadata data structure

FTL public function (include Protocol API) declaration

sata.h SATA related header file

Defines ATA command list and SATA command

structure declaration
sata_cmd.h ATA command related header file

./target_spw target.h Target device related header file

- Defines memory map

- Defines NAND/PLL/Timer/Clock cycle speed

misc.h Other useful functions (LED, Time measurement) are

declared

4.1.3. Source code File

Table 12) Jasmine firmware Source file (some files are omitted)

Location File Description
./ftl_tutorial ftl.c Tutorial FTL source code (no GC)

./ftl_greedy ftl.c Greedy FTL source code (simple GC)

./ftl_dummy ftl.c Dummy FTL source code (no access to NAND flash)

./sata sata_cmd.c Defines ATA command function

sata_isr.c Defines FIQ and SATA interrupt service routine

function

sata_main.c SATA hardware initialization and definition of

firmware main function

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 34

Copyright 2011 VLDB Lab. All rights reserved.

./installer installer.c Defines functions for firmware installation

- enable factory mode

- scan bad block list

- install block 0

- install FTL metadata

installer.sln Firmware installer solution file

- Build installer using Visual C++ 2010 Express

./target_spw initialize.c Defines firmware initialization function

- PLL/interrupt/Barefoot controller initialization

mem_util.c Defines memory utility function

flash.c Flash memory initialization and defines some FCP

functions
flash_wrapper.c Defines LLD function

- Page read/write/copy function

- Block erase function

misc.c Defines other useful functions

- LED/NAND block test/Time measurement

init_gnu.s

init_rvds.s
Firmware startup code (GNU/RVDS)

./tc tc_synth.c Defines Synthetic test case function

4.1.4. Miscellaneous File

Table 13) Jasmine firmware miscellaneous file (some files are omitted)

Location File Description
./ release_lock.inc Script file which opens JTAG debug port

README Shows the build process and execution guidelines of

the Jasmine firmware.

HISTORY Jasmine firmware revision log

COPYING Jasmine OpenSSD Platform license

- GPL ver. 3

./build_rvds armcc_opt.via

armlink_opt.via
Set RVDS compile option

file_list.via Target file list compiled during firmware build

- Includes the new file, if any exists.

scatter.scl Code/ZI/RW data memory address allocating scripts

to compile with RVDS.

./build_gnu ld_script code/ZI/RW data memory address allocating scripts

to compile with GNU tool

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 35

Copyright 2011 VLDB Lab. All rights reserved.

Installer function builds the base condition of FTL operation from Jasmine firmware

installer (./installer/installer.c).

4.2.1. Install

void install(void)

Function:

Performs firmware installation on Jasmine board and includes the following:

o load scan list

o load firmware image

o install block #0

o install FTL metadata

NOTE: Current firmware version erases the NAND block completely when ftl_open,

format operation invokes. However, there is a possibility to have response time

out error while initializing Jasmine board in normal mode, so to avoid this, format the

board in install function. Installing base condition FTL metadata for later Jasmine

board booting paves a way for POR by ftl_open while loading metadata logged on

flash memory.

4.2.2. ftl_install_mapping_table

void ftl_install_mapping_table(void)

Function:

This function logs various metadata base condition including mapping table for

FTL operation to NAND flash. During firmware installation, called by install

function in ‘Factory mode’.

The metadata logged in this function should be loaded during FTL

initialization process (ftl_open) while booting the Jasmine board. Therefore, the

developer must modify and implement ftl_open function too.

FTL protocol API initializes FTL and manages the features of handling the delivered

commands by host, which SATA calls. These functions are core of this API, which makes

SATA and FTL work.

This chapter will specify the FTL public functions of (./ftl_tutorial/ftl.h), in

Tutorial FTL.

4.2. Installer Function

4.3. FTL Protocol API

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 36

Copyright 2011 VLDB Lab. All rights reserved.

4.3.1. ftl_open

void ftl_open(void)

Function:

Performs FTL initialization. First function called by firmware main function when

device turns on.

(init_jasmine of ./target_spw/initialize.c) function performs

following operations

o Build scan list

o FTL format

o FTL metadata initialization

4.3.2. ftl_read

void ftl_read(UINT32 const lba, UINT32 const num_sectors)

Function:

Performs FTL read request. Actual IO unit size is VPAGE size.

Parameter:

lba – Logical block address given by the host

num_sectors – Number of sectors (Unit sector size is 512B)

4.3.3. ftl_write

void ftl_write(UINT32 const lba, UINT32 const num_sectors)

Function:

Performs FTL write operation. Actual IO unit size is VPAGE size

Parameter:

lba – Logical block address given by the host

num_sectors – Number of sectors (Unit sector size is 512B)

4.3.4. ftl_flush

void ftl_flush(void)

Function:

Logs FTL metadata on flash memory. Called periodically when SATA controller is in

idle state. (ata_flush_cache, ata_idle, ata_standby from

./sata/sata_cmd.c)

4.3.5. ftl_isr

void ftl_isr(void)

Function:

Responsible for BSP interrupt handling feature. IRQ interrupt handler

(irq_handler, from ./target_spw/misc.c) calls this function if interrupt

occurs during IO request to flash memory.

Checks BSP_INTR register and handles each of the corresponding interrupt

event

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 37

Copyright 2011 VLDB Lab. All rights reserved.

This chapter specifies the interface LLD (Low-Level device Driver) API. LLD interface

manages the delivery of flash commands to flash controller to handle actual IO after FTL

internal operations.

NOTE: LLD API (./target_spw/flash_wrapper.c) eases the implementation of

FTL for FTL developers. In order to increase parallelism, developers have to

implement separate LLD API or flash command through FCP register setting.

4.4.1. nand_page_read

void nand_page_read(UINT32 const bank, UINT32 const vblock,

UINT32 const page_num, UINT32 const buf_addr)

Function:
Performs certain page read operations on flash memory by using FCP command

(FC_NORMAL_READ_OUT). RETURN_WHEN_DONE delivers the FCP command to

WR.

Parameter:

bank – bank number (max: NUM_BANKS)

vblock – VBLK number (max: VBLKS_PER_BANK)

page_num – VPAGE number (max: PAGES_PER_BLK)

buf_addr – FTL internal buffer address loads the read page data

4.4.2. nand_page_ptread

void nand_page_ptread(UINT32 const bank, UINT32 const vblock,

UINT32 const page_num, UINT32 const sect_offset, UINT32 const

num_sectors, UINT32 const buf_addr, UINT32 const issue_flag)

Functions:

Performs certain page read operation on flash memory by using FCP command

(FC_NORMAL_READ_OUT). This main purpose of this function are:

o When reads the logged metadata on flash memory (RETURN_WHEN_DONE)

o When reads the certain column user data to handle partial page program

(RETURN_ON_ISSUE)

Parameter:

bank – Bank number (max: NUM_BANKS)

vblock –VBLK number (max: VBLKS_PER_BANK)

page_num – VPAGE number (max: PAGES_PER_BLK)

sect_offset – VPAGE starting sector offset (max: SECTORS_PER_VPAGE)

num_sectors – Number of sectors (Unit sector size is 512B)

buf_addr – FTL internal buffer address loads the read page data

issue_flag – Sets the FCP issue flag. (Refer to Table 9, from chapter 3.4.1)

4.4. LLD API

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 38

Copyright 2011 VLDB Lab. All rights reserved.

4.4.3. nand_page_read_to_host

void nand_page_read_to_host(UINT32 const bank, UINT32 const

vblock, UINT32 const page_num)

Function:

Reads a certain page on flash memory by using FCP command

(FC_NORMAL_READ_OUT) and delivers it to SATA host interface. After read

operation, modifies SATA read buffer pointer

Parameter:

bank – Bank number (max: NUM_BANKS)

vblock – VBLK number (max: VBLKS_PER_BANK)

page_num – VPAGE number (max: PAGES_PER_BLK)

4.4.4. nand_page_ptread_to_host

void nand_page_ptread_to_host(UINT32 const bank, UINT32 const

vblock, UINT32 const page_num, UINT32 const sect_offset, UINT32

const num_sectors)

Function:

Reads few sectors (i.e., partial page read) of a certain page on flash memory by

using FCP command (FC_NORMAL_READ_OUT) and delivers it to SATA host

interface. After read operation, modifies SATA read buffer pointer.

Parameter:

bank – Bank number (max: NUM_BANKS)

vblock – VBLK number (max: VBLKS_PER_BANK)

page_num – VPAGE number (max: PAGES_PER_BLK)

sect_offset – VPAGE starting sector offset for partial read (max:

SECTORS_PER_VPAGE)

num_sectors – Number of sectors (Unit sector size is 512B)

4.4.5. nand_page_program

void nand_page_program(UINT32 const bank, UINT32 const vblock,

UINT32 const page_num, UINT32 const buf_addr)

Function:

Logs FTL internal buffer data on certain page of flash memory by using FCP

command (FC_NORMAL_IN_PROG) (Frequently used for metadata logging).

Parameter:

bank – Bank number (max: NUM_BANKS)

vblock – VBLK number (max: VBLKS_PER_BANK)

page_num – VPAGE number (max: PAGES_PER_BLK)

buf_addr – FTL internal buffer address where write page data exists and should be

VPAGE-align.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 39

Copyright 2011 VLDB Lab. All rights reserved.

4.4.6. nand_page_program_from_host

void nand_page_program_from_host(UINT32 const bank, UINT32 const

vblock, UINT32 const page_num)

Function:

This function records some sectors in the certain page of NAND Flash memory by

using FCP command (FC_NORMAL_IN_PROG) (i.e., partial program)

After page writing operation, adjusts SATA write buffer.

Parameter:

bank – number of banks (max: NUM_BANKS)

vblock – number of VBLK (max: VBLKS_PER_BANK)

page_num – number of VPAGE (max: PAGES_PER_BLK)

sect_offset – start offset of VPAGE for partial (max: SECTORS_PER_VPAGE)

num_sectors – number of sectors (sector size unit: 512B)

NOTE: Check NOP (Number of Program) of NAND Flash, to do partial programming

more than two times at one page.

4.4.1. nand_page_copyback

void nand_page_copyback(UINT32 const bank, UINT32 const

src_vblock, UINT32 const src_page, UINT32 const dst_vblock,

UINT32 const dst_page)

Function:

This function copies pages that are in the same bank using FCP command

(FC_COPYBACK). The copying speed is quite fast because DRAM buffer is not

involved.

This function writes the pages after reading the pages in FTL internal buffer

because internal copy-back is impossible as in the following cases

o If NAND flash memory does not support internal copy-back operation.

o if each page is located in different planes.

Parameter:

bank – number of banks (max: NUM_BANKS)

src_vblock – original VBLK number (max: VBLKS_PER_BANK)

src_page – original VPAGE number (max: PAGES_PER_BLK)

dst_vblock – target VBLK number (max: VBLKS_PER_BANK)

dst_page – target VPAGE number (max: PAGES_PER_BLK)

4.4.2. nand_page_modified_copyback

void nand_page_modified_copyback(UINT32 const bank, UINT32 const

src_vblock, UINT32 const src_page, UINT32 const dst_vblock,

UINT32 const dst_page, UINT32 const sect_offset, UINT32 dma_addr,

UINT32 const dma_count)

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 40

Copyright 2011 VLDB Lab. All rights reserved.

Function:

This function edits data of specific pages in the same bank and copies them

Note: Page write operation should be followed by page reading in FTL internal

buffer because internal copy-back is not possible as in the following cases

o If the NAND Flash Memory does not support copy-back operation

o If each page is located in different planes

If FC_MODIFY_COPYBACK is not possible, modify the copy- back operation as

in the following steps:

1. Read the original page and copy it to DRAM copy buffer.

2. Send some of the existing data (left hole) to object page of Flash memory

using FC_NORMAL_IN command

3. Send new data to object page of Flash memory using FC_IN command

4. Send the rest of the existing data (right hole) using FC_IN_PROG command

and program it with the data that is sent in step 2,3 at Flash memory.

Parameter:

bank – bank number (max: NUM_BANKS)

src_vblock – original VBLK number (max: VBLKS_PER_BANK)

src_page – original VPAGE number (max: PAGES_PER_BLK)

dst_vblock – target VBLK number (max: VBLKS_PER_BANK)

dst_page – target VPAGE number (max: PAGES_PER_BLK)

sect_offset – sector offset changed to new data (max: SECTORS_PER_PAGE)

dma_addr – buffer address containing the new data

dma_count – size of new data (Unit: Byte)

4.4.3. nand_block_erase

void nand_block_erase(UINT32 const bank, UINT32 const vblock)

Function:

Erase specific VBLK using FCP command (FC_ERASE)

Note: Erases 2 physical blocks in 1-plane mode and 4 physical blocks in 2-plane

mode.

Parameter:

bank – bank number (max: NUM_BANKS)

vblock – VBLK number (max: VBLKS_PER_BANK)

Memory utility API allows memory communication between SRAM and DRAM. Calls these

functions when read/write/search operations requires a memory address.

(./target_spw/mem_util.c) defines the Memory utility functions

4.5. Memory Utility API

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 41

Copyright 2011 VLDB Lab. All rights reserved.

4.5.1. _mem_set_sram

void _mem_set_sram(void* const addr, UINT32 const val, UINT32

const num_bytes)

Macro – #define mem_set_sram (ADDR, VAL, BYTES)

Function:

Sets memory value of SRAM

Parameter:

ADDR – Memory address in SRAM field. The memory address should be 4 Byte. (Max:

0x1000_0000)

VAL – Value to set

BYTES – Byte field to set. It must be 4 Byte unit.

4.5.2. _mem_set_dram

void _mem_set_dram(void* const addr, UINT32 const val, UINT32

const num_bytes)

Macro – #define mem_set_dram(ADDR, VAL, BYTES)

Function:

Sets memory value of DRAM

Parameter:

ADDR – Memory address in DRAM field (min: 0x4000_0000)

VAL – Value to set

BYTES – Byte field to set. It must be multiple of DRAM_ECC_UNIT.

4.5.3. _mem_copy

void _mem_copy(void* const dst, const void* const src, UINT32

const num_bytes)

Macro – #define mem_copy(DST, SRC, BYTES)

Function:

Performs memory copy to DMA.

Note: Improves the performance, if the frequently referenced metadata in DRAM is

copied to and accessed from SRAM.

Parameter:

DST – Destination memory address. It must be 4 Bytes

SRC – Source memory address. It must be 4 Bytes

BYTES – Byte field to set. It must be 4 Bytes unit (max: 32768)

(In case of DRAM-to-DRAM, it must be a multiple of DRAM_ECC_UNIT)

4.5.4. _mem_bmp_find_sram

UINT32 _mem_bmp_find_sram(const void* const bitmap, UINT32 const

num_bytes, UINT32 const val)

Macro – #define mem_bmp_find_sram(BMP, BYTES, VAL)

Function:

Checks if a specific value exists in SRAM bitmap memory.

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 42

Copyright 2011 VLDB Lab. All rights reserved.

Parameter:

BMP – Bitmap memory address. It must be 4 Bytes (max: 0x1000_0000)

BYTES – Byte field to set. It must be 4Byte unit (max: UNIT * SIZE = 32768)

VAL – Value to find (0 or 1)

Returns:

On success returns the index number of the matched

bitmap. On failure returns BYTES * 8.

4.5.5. _mem_bmp_find_dram

UINT32 _mem_bmp_find_dram(const void* const bitmap, UINT32 const

num_bytes, UINT32 const val)

Macro – #define mem_bmp_find_dram(BMP, BYTES, VAL)

Function:

Checks if a specific value exists in DRAM bitmap memory field.

Parameter:

BMP – Bitmap memory address. It must be 4 Bytes (min: 0x4000_0000)

BYTES – Byte field to set. It must be 4 Byte unit (max: UNIT * SIZE = 32768)

VAL – Value to find (0 or 1)

Returns:

On success returns the index number of the matched

bitmap. On failure returns BYTES * 8.

4.5.6. _mem_search_min_max

UINT32 _mem_search_min_max(const void* const addr, UINT32 const

bytes_per_item, UINT32 const size, UINT32 const cmd)

Macro – #define mem_search_min_max(ADDR, UNIT, SIZE, CMD)

Function:

Finds the maximum value or minimum value.

Parameter:

ADDR – memory address to start searching. It must be 4Bytes.

UNIT – unit to search (e.g., 1, 2, 4 Byte)

SIZE – index range to search (max: UNIT * SIZE = 32768)

CMD – MU command code

(e.g., MU_CMD_SEARCH_MAX_SRAM, MU_CMD_SEARCH_MIN_SRAM,

MU_CMD_SEARCH_MAX_DRAM, MU_CMD_SEARCH_MIN_DRAM)

Returns:

On success returns the index number of the maximum

value or minimum value if exists. On failure returns the

SIZE

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 43

Copyright 2011 VLDB Lab. All rights reserved.

Example code:

4.5.7. _mem_search_equ

UINT32 _mem_search_equ(const void* const addr, UINT32 const

bytes_per_item, UINT32 const size, UINT32 const cmd, UINT32

const val)

Macro – #define mem_search_equ(ADDR, UNIT, SIZE, CMD, VAL)

Function:

Finds if a specific value exists in memory field.

Parameter:

ADDR – memory address to start searching. It must be 4Bytes.

UNIT – unit to search (e.g., 1, 2, 4 Byte)

SIZE – index range to search (max: UNIT * SIZE = 32768)

CMD – MU command code

(e.g., MU_CMD_SEARCH_EQU_SRAM, MU_CMD_SEARCH_EQU_DRAM)

VAL – value to find

Returns:

On success returns the index number of the matched

value. On failure returns BYTES * 8

Example code:

Notes:

Searching a specific 4Byte value in 32KB DRAM field using DMA (Memory utility)

takes about 180u (i.e., 177MB/s. However, if the SATA or NAND access the DRAM

data, it would be slower)

UINT32 zxcv[100] = {0};

UINT32 idx;

zxcv[4] = 0xFFFFFFFF

// search max value in array ‘zxcv’

idx = mem_search_min_max(zxcv, sizeof(UINT32), 100,

MU_CMD_SEARCH_MAX_SRAM); // ret 4

UINT32 zxcv[100] = {0};

UINT32 idx;

zxcv[4] = 0xFFFFFFFF; // Write data to buffer

// search 0xFFFFFFFF in array ‘zxcv’

idx = mem_search_equ(zxcv, sizeof(UINT32), 100,

MU_CMD_SEARCH_EQU_SRAM, 0xFFFFFFFF); // ret 4

idx = mem_search_equ(zxcv, sizeof(UINT32), 100,

MU_CMD_SEARCH_EQU_SRAM, 0x80808080); // ret 100

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 44

Copyright 2011 VLDB Lab. All rights reserved.

4.5.8. _mem_cmp_sram

UINT32 _mem_cmp_sram(const void* const addr1, const void* const

addr2, const UINT32 num_bytes)

Macro – #define mem_cmp_sram(ADDR1, ADDR2, BYTES)

Function:

Compares the two memory fields in SRAM

Parameter:

ADDR1 – First memory address. It must be 4Bytes. (Max: 0x1000_0000)

ADDR2 – Second memory address. It must be 4Bytes. (Max: 0x1000_0000)

BYTES– Compares the range

Returns:

If same returns 0. If not returns -1 or 1

4.5.9. _mem_cmp_dram

UINT32 _mem_cmp_dram(const void* const addr1, const void* const

addr2, const UINT32 num_bytes)

Macro – #define mem_cmp_dram(ADDR1, ADDR2, BYTES)

Function:

Compares the two memory fields in DRAM. In this function, CPU (not the DMA)

directly reads DRAM data and compares them

Parameter:

ADDR1 – Start memory address. It must be 4Bytes. (Min: 0x4000_0000)

ADDR2 – Start memory address. It must be 4Bytes. (Min: 0x4000_0000)

BYTES – Compares the range

Returns:

If same returns 0. If not returns -1 or 1

4.5.10. _read_dram_8

UINT8 _read_dram_8(UINT32 const addr)

Macro – #define read_dram_8(ADDR)

Function:

CPU directly reads 8 bits (1 Byte) memory from DRAM to SRAM

Parameter:

ADDR – DRAM memory address to read

Returns:

8bit memory data read from DRAM

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 45

Copyright 2011 VLDB Lab. All rights reserved.

4.5.11. _read_dram_16

UINT8 _read_dram_16(UINT32 const addr)

Macro – #define read_dram_16(ADDR)

Function:

CPU directly reads 16-bit (2 Byte) memory from DRAM to SRAM

Parameter:

ADDR – DRAM memory address to read

Returns:

16-bit memory data read from DRAM

4.5.12. _read_dram_32

UINT8 _read_dram_32(UINT32 const addr)

Macro – #define read_dram_32(ADDR)

Function:

CPU directly reads 32-bit (4 Byte) memory from DRAM to SRAM

Parameter:

ADDR – DRAM memory address to read. It must be 4Bytes

Returns:

32-bit memory data read from DRAM

4.5.13. _write_dram_8

void _write_dram_8(UINT32 const addr, UINT32 const val)

Macro – #define write_dram_8(ADDR, VAL)

Function:

Writes 8-bit (1 Byte) data in DRAM memory using mem_copy function (debug

cautiously because it uses an aligned relative address)

Parameter:

ADDR – DRAM memory address to write data (min:

0x4000_0000)

VAR – 8-bit data

4.5.14. _write_dram_16

void _write_dram_16(UINT32 const addr, UINT32 const val)

Macro – #define write_dram_16(ADDR, VAL)

Function:

Writes 16-bit (2 Byte) data in DRAM memory using mem_copy function (Debug

cautiously because it uses an aligned relative address).

Parameter:

ADDR – DRAM memory address to write data (min:

0x4000_0000)

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 46

Copyright 2011 VLDB Lab. All rights reserved.

VAR – 16-bit data

4.5.15. _write_dram_32

void _write_dram_32(UINT32 const addr, UINT32 const val)

Macro – #define write_dram_32(ADDR, VAL)

Function:

Writes 16-bit (2 Byte) data in DRAM memory using mem_copy function.

Parameter:

ADDR – DRAM memory address to write data. It must be 4Bytes (min:

0x4000_0000)

VAR – 32-bit data

4.5.16. _set_bit_dram

void _set_bit_dram(UINT32 const base_addr, UINT32 const

bit_offset)

Macro – #define set_bit_dram(BASE_ADDR, BIT_OFFSET)

Function:

Sets 1bit specific offset of DRAM memory

Parameter:

BASE_ADDR – DRAM base address

BIT_OFFSET – bit offset of BASE_ADDR

4.5.17. _clr_bit_dram

void _clr_bit_dram(UINT32 const base_addr, UINT32 const

bit_offset)

Macro – #define clr_bit_dram(BASE_ADDR, BIT_OFFSET)

Function:

Unsets (clear) 1bit specific offset of DRAM memory

Parameter:

BASE_ADDR – DRAM base address

BIT_OFFSET – bit offset of BASE_ADDR

4.5.18. _tst_bit_dram

BOOL32 _tst_bit_dram(UINT32 const base_addr, UINT32 const

bit_offset)

Macro – #define tst_bit_dram(BASE_ADDR, BIT_OFFSET)

Function:

Tests 1-bit specific offset of DRAM memory

Parameter:

BASE_ADDR – DRAM base address

BIT_OFFSET – bit offset of BASE_ADDR

The Jasmine OpenSSD Platform: Technical Reference Manual Version 1.4

Page 47

Copyright 2011 VLDB Lab. All rights reserved.

Returns:

If the test target bit_offset is 0 then returns 0. If not

returns some value other than 0.

